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Two Interacting Strike Slip Faults in a Viscoelastic Half 
Space Under Increasing Tectonic Forces 

Papiya Debnath, Sanjay Sen 

Abstract:   Two interacting inclined strike slip faults are considered in a viscoelastic half space under the action of tectonic forces which increases with time. 
Tectonic forces generated due to mantle convection and other related phenomena have been the main driving forces for the movement of Lithospheric plates leading 
to earthquake. It may be noted that during the aseismic period in between two major seismic events, stresses built up gradually due to the action of tectonic forces.  
It is assumed that the accumulated stress when exceeds a threshold value, a creeping movement across the fault sets in. Analytical expressions for displacement, 
stresses and strain are being obtained using suitable mathematical techniques, both before and after the fault movement. It is expected that the numerical 
computation will give us an idea on the rate of stress accumulation in the media under such conditions. 
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1. INTRODUCTION 
 
Tectonic forces generated due to mantle convection and other related 
phenomena plays important role in the nature of stress accumulation during 
the aseismic period in seismically active regions. The tectonic forces has been 
assumed to be of the form 𝜏∞(𝑡) = 𝜏∞(0)(1 + kt) , where k is a constant, 
whose value depends upon the model parameters. Interacting effect among 
the neighbouring faults have been considered by [1] , assuming 𝜏∞(𝑡) to be a 
constant, independent of time. In the present paper the effect due to the 
increasing value of 𝜏∞(𝑡) will be investigated. 

2. FORMULATION 
 

We consider a viscoelastic half space of Maxwell type representing the 
Lithosphere-asthenosphere system. Two long inclined and buried strike-slip 
faults F1 and F2 are taken to be situated in a half space with inclination θ1 and 
θ2 respectively with the horizontal as shown in Fig. 1. 

Let d1 and d2are the depths of the upper edges of the faults below the free 
surface and D is the distance measured horizontally between the upper edges 
of the faults. θ1 and θ2  are the inclination of the faults with the horizontal. D1 
and D2 are the lengths of the faults F1 and F2 respectively. 

We introduce a system of rectangular Cartesian coordinate axes  (o, y1, y2, y3), 

�o′, y1′, y2′, y3′�,   �o′ ′, y1′′, y2′′, y3′′� as shown in the following figure. The 
relationship between these coordinate system are given by: 

y ′1 = y1
y ′2 = y2sinθ1 − (y3 − d1)cosθ1
y ′3 = y2cosθ1 + (y3 − d1)sinθ1

and
y ′′1 = z1

y ′′2 = z2sinθ2 − z3cosθ2
y′′3 = z2cosθ2 + z3sinθ2 ⎭

⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

                                                                                                                                                                                                            

where  z2 = y2 − D,      z3 = y3 − d2. 
 
The lengths of the faults are assumed to be large enough compare to their 
widths so that choosing y1axes along the strike of the fault 𝐹1, the 
displacement stresses and strain become independent of y1. We thus have a 
two dimensional problem where the displacement, stresses and strain are 
functions of  y2, y3  and of t. 

2.1 Constitutive Equations 

The constitutive Equations have been taken as: 

�
1
𝜂

+
1
𝜇
𝜕
𝜕𝑡
� 𝜏12 =

𝜕
𝜕𝑡

(𝑒12) =
𝜕2𝑢
𝜕𝑡𝜕𝑦2

�
1
𝜂

+
1
𝜇
𝜕
𝜕𝑡
� 𝜏13 =

𝜕
𝜕𝑡

(𝑒13) =
𝜕2𝑢
𝜕𝑡𝜕𝑦3⎭

⎪
⎬

⎪
⎫

                                                                     (1) 

where 𝜂 is the effective viscosity and 𝜇  is the effective rigidity of the material. 

 

2.2. Stress equation of motion 

The stresses satisfy the following equation of motion: 

𝜕
𝜕𝑦2

(𝜏12) +
𝜕
𝜕𝑦3

(𝜏13) = 0

(−∞ < 𝑦2 < ∞,   𝑦3 ≥ 0,   𝑡 ≥ 0)
�                                                                            (2) 

[Assuming that the external forces do not change significantly during our 
investigation and neglecting the inertial term which is very small during the 
aseismic period] 

2.3 Initial conditions 

  Let (𝑢)0, (𝜏12)0, (𝜏13)0   and (𝑒12)0 are the values of u, 𝜏12, 𝜏13, 𝑒12   
respectively at time t=0. [t=0 representing  an instant when the model is in 
aseismic state] 

2.3. Boundary conditions 

  The boundary conditions are: 

𝜏13 = 0 on  𝑦3 = 0 , (−∞ < 𝑦2 < ∞,    𝑡 ≥ 0)
  

𝜏13 → 0 as  𝑦3 → ∞ , (−∞ < 𝑦2 < ∞,    𝑡 ≥ 0)  
�                                                        (3) 

Mantle convection introduces tectonic forces in the lithosphere-asthenosphere 
system far away from the faults which causes the faults to slip leading to an 
earthquake. We represent these tectonic forces by 𝜏∞(𝑡) and assume it to be a 
slowly increasing function of time and write 

𝜏∞(𝑡) = 𝜏∞(0)(1 + 𝑘𝑡) , where  𝑘 > 0, 

Then, the relevant boundary conditions become: 

𝜏12 → 𝜏∞(𝑡) = 𝜏∞(0)(1 + 𝑘𝑡), (𝑘 > 0)
as |𝑦2| → ∞, for 𝑦3 ≥ 0, 𝑡 ≥ 0. �                                                         (4) 

𝜏∞(0) = The value of 𝜏∞(𝑡) at t = 0.
𝜏12(0) → 𝜏∞(0) as |𝑦2| → ∞, for t = 0.�                                                        (5) 

  Now differentiating partially equation (1) with respect to 𝑦2  and  with respect 
to 𝑦3 and adding them using equation (2) we get, 

∇2𝑢(𝑦2 ,𝑦3, 𝑡) = 0                                                                                          (6) 

3. SOLUTION FOR DISPLACEMENTS, STRESSES AND STRAINS IN THE 
ABSENCE OF ANY FAULT MOVEMENT 

In the absence of any fault movement the displacement and stresses are 
continuous through out the system. Stress accumulated due to the action of 
𝜏∞ . In order to obtain the expressions for displacement, strain and stresses 
we take Laplace transform of (1) to (6) with respect to t. The resulting 
boundary value problem can be solved by taking integral transforms of the 
constitutive equations and the boundary conditions with respect to t. The 
solutions are given below. 

                          

                                              
𝑢 = (𝑢)0 + 𝑦2𝜏∞(0) �𝑘𝑡

𝜇
+ 𝑡

𝜂
+ 𝑘𝑡2

2𝜂
�

                                                
𝑒12 = (𝑒12)0  + 𝜏∞(0) �𝑘𝑡

𝜇
+ 𝑡

𝜂
+ 𝑘𝑡2

2𝜂
�

𝜏12 = (𝜏12)0𝑒
−𝜇𝑡𝜂 + 𝜏∞(0) �1 + 𝑘𝑡 − 𝑒−

𝜇𝑡
𝜂 �

𝜏13 = (𝜏13)0𝑒
−𝜇𝑡𝜂

𝜏1′2′ =   The stresses across the fault 𝐹1
=  𝜏12𝑠𝑖𝑛𝜃1 − 𝜏13𝑐𝑜𝑠𝜃1              

=  �𝜏1′2′�0𝑒
−𝜇𝑡𝜂 + 𝜏∞(0) �1 + 𝑘𝑡 − 𝑒−

𝜇𝑡
𝜂 � 𝑠𝑖𝑛𝜃1 , 𝑡 ≥ 0

𝜏1′′2′′ =   The stresses across the fault 𝐹2
=  𝜏12𝑠𝑖𝑛𝜃2 − 𝜏13𝑐𝑜𝑠𝜃2    

=  �𝜏1′′2′′�0𝑒
−𝜇𝑡𝜂 + 𝜏∞(0) �1 + 𝑘𝑡 − 𝑒−

𝜇𝑡
𝜂 � 𝑠𝑖𝑛𝜃2, 𝑡 ≥ 0

 

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

                        (7)           
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From the above result we find that 𝜏1′2′ and 𝜏1′′2′′ are increasing with time as  

 𝜏∞(0) �1 + 𝑘𝑡 − 𝑒−
𝜇𝑡
𝜂 � 𝑠𝑖𝑛𝜃1 and  𝜏∞(0) �1 + 𝑘𝑡 − 𝑒−

𝜇𝑡
𝜂 � 𝑠𝑖𝑛𝜃2  respectively, 

noting that 𝑒−
𝜇𝑡
𝜂 → 0  as  𝑡 → ∞ .  

This has been shown in Fig. 2 for before fault movement ,different values of k. 

We now assume that the fault F1 and F2, and the local rheological condition 
near them are such that they can withstand a stress of magnitude (𝜏𝑐)1 = 200 
bar, (𝜏𝑐)2 = 250 bar respectively. We further assume 𝜏∞(0) = 50 bar. It is 
found that the time taken to reach these critical values are T1 =  117  years 
and T2 =  152  years (assuming 𝜃1 = 𝜃2 = 600). 

We consider first when the stress 𝜏1′2′ reaches the value  (𝜏𝑐)1 after T1 years 
and the fault F1 starts creeping with a velocity  𝑣1 cm/year. This creeping 
dislocation may be characterised by 

[𝑢]𝐹1 = 𝑈1(𝑡1)𝑓�𝑦′3�𝐻(𝑇 − 𝑡1)                                                                     (8) 

4. SOLUTION OF THE PROBLEM AFTER THE CREEPING MOVEMENT 
ACROSS 𝐅𝟏  FOR   𝟎 < 𝑡 ≤ 𝑻𝟏 < 𝑻𝟐  

After the commencement of the fault creep across F1 the boundary value 
problem for  displacement, strain and stresses can be written as: 

4.1 Constitutive Equations:  As in (1). 

4.2 Stress equation of motion:  As in (2). [Neglecting the inertial terms]  

4.3 Boundary conditions:  As in  (3), (4) and (5). 

In addition there is a dislocation condition given by 

[𝑢]𝐹1 = 𝑈1(𝑡1)𝑓�𝑦′3�𝐻(𝑇 − 𝑡1)                                     

We seek to obtain the solutions for the following forms: 

𝑢 = (𝑢)1 + (𝑢)2
𝑒12 = (𝑒12)1 + (𝑒12)2
𝜏12 = (𝜏12)1 + (𝜏12)2
𝜏13 = (𝜏13)1 + (𝜏13)2
𝜏1′2′ = �𝜏1′2′�1 + �𝜏1′2′�2
𝜏1′′2′′ = (𝜏1′′2′′)1 + (𝜏1′′2′′)2⎭

⎪⎪
⎬

⎪⎪
⎫

                                                                                        (9) 

  where (𝑢)1, (𝑒12)1,  (𝜏12)1 , (𝜏13)1, �𝜏1′2′�1 and (𝜏1′′2′′)1 satisfy the equations (1), 

(2), (3), (4), (5) and (𝑢)2, (𝑒12)2,  (𝜏12)2  , (𝜏13)2  , �𝜏1′2′�2 and (𝜏1′′2′′)2 satisfied 
equations (1), (2), (3), (4), (5) with replacing the equation 𝜏12  →  𝜏∞(𝑡) by 

𝜏12 → 0  𝑎𝑠  |𝑦2| → ∞,𝑓𝑜𝑟  𝑦3 ≥ 0, 𝑡 ≥ 0.                                                  (10) 

and an additional dislocation condition 

[𝑢]𝐹1 = 𝑈1(𝑡1)𝑓�𝑦 ′3�𝐻(𝑡 − 𝑇1) 

where [u] is the discontinuity in u across F1 and 𝐻(𝑡 − 𝑇1) is Heaviside unit 
step function. 

The solutions for (𝑢)1, (𝑒12)1,  (𝜏12)1 , (𝜏13)1, �𝜏1′2′�1 and (𝜏1′′2′′)1 can be 
obtained as in the case when there was no fault movement so that 

                                              

𝑢 = (𝑢)0 + 𝑦2𝜏∞(0) �
𝑘𝑡
𝜇

+
𝑡
𝜂

+
𝑘𝑡2

2𝜂
�

                                                

𝑒12 = (𝑒12)0  + 𝜏∞(0) �
𝑘𝑡
𝜇

+
𝑡
𝜂

+
𝑘𝑡2

2𝜂
�

𝜏12 = (𝜏12)0𝑒
−𝜇𝑡𝜂 + 𝜏∞(0) �1 + 𝑘𝑡 − 𝑒−

𝜇𝑡
𝜂 �

𝜏13 = (𝜏13)0𝑒
−𝜇𝑡𝜂

𝜏1′2′ =   The stresses across the fault 𝐹1
=  𝜏12𝑠𝑖𝑛𝜃1 − 𝜏13𝑐𝑜𝑠𝜃1              

=  �𝜏1′2′�0𝑒
−𝜇𝑡𝜂 + 𝜏∞(0) �1 + 𝑘𝑡 − 𝑒−

𝜇𝑡
𝜂 � 𝑠𝑖𝑛𝜃1, 𝑡 ≥ 0

𝜏1′′2′′ =   The stresses across the fault 𝐹2
=  𝜏12𝑠𝑖𝑛𝜃2 − 𝜏13𝑐𝑜𝑠𝜃2    

=  �𝜏1′′2′′�0𝑒
−𝜇𝑡𝜂 + 𝜏∞(0) �1 + 𝑘𝑡 − 𝑒−

𝜇𝑡
𝜂 � 𝑠𝑖𝑛𝜃2, 𝑡 ≥ 0

 

For finding the solutions for (𝑢)2, (𝑒12)2,  (𝜏12)2  , (𝜏13)2  , �𝜏1′2′�2 and (𝜏1′′2′′)2 we 
use a modified Green's function method developed by Maruyama (1966)[2], 
Rybicki(1871)[3], correspondence principle and integral transforms. 

The boundary value problem for (𝑢)2, (𝑒12)2,  (𝜏12)2  , (𝜏13)2   which are 
function of y2, y3 and t which satisfies (1) to (6), (8), (10). 

�
1
𝜂

+
1
𝜇
𝜕
𝜕𝑡1

� ( 𝜏12)2 =
𝜕2(𝑢)2
𝜕𝑡1𝜕𝑦2

�
1
𝜂

+
1
𝜇
𝜕
𝜕𝑡1

� (𝜏13)2 =
𝜕2(𝑢)2
𝜕𝑡1𝜕𝑦3 ⎭

⎪
⎬

⎪
⎫

                                                                    (11) 

Where,   𝑡1 = 𝑡 − 𝑇1  (−∞ < 𝑦2 < ∞,  𝑦3 ≥ 0,   𝑡 ≥ 𝑇1) 

𝜕
𝜕𝑦2

( 𝜏12)2 +
𝜕
𝜕𝑦3

(𝜏13)2 = 0

(−∞ < 𝑦2 < ∞,   𝑦3 ≥ 0,   𝑡 ≥ 𝑇1)
�                                                          (12) 

and boundary conditions 

(𝜏13)2 = 0 on  𝑦3 = 0 , (−∞ < 𝑦2 < ∞,    𝑡 ≥ 𝑇1)
  

(𝜏13)2 → 0 as  𝑦3 → ∞ , (−∞ < 𝑦2 < ∞,    𝑡 ≥ 𝑇1)
 (𝜏12)2 → 0 as |𝑦2| → ∞,  𝑦3 ≥ 0,   𝑡 ≥ 𝑇1

 ⎭
⎪
⎬

⎪
⎫

                              (13) 

(∇2𝑢)2 = 0                                                                                           (14) 

[𝑢]2 = 𝑈1(𝑡1)𝑓�𝑦′3�𝐻(𝑡 − 𝑇1)                                                              (15) 

across  F1  �y2 ′ = 0,    0 ≤ 𝑦3′ ≤ D�  with 𝑈1(𝑡1) = 0 for 𝑡1 ≤ 0 

also (𝑢)2, (𝑒12)2,  (𝜏12)2  , (𝜏13)2  = 0 for 𝑡1 ≤ 0 

To obtain the solutions for (𝑢)2, (𝑒12)2,  (𝜏12)2  , (𝜏13)2   we take Laplace 
transform of (11) to (15) with respect to 𝑡1(= 𝑡 − 𝑇1)  and obtain a boundary 
value problem involving (𝑢�)2,  (𝑒12����)2, (𝜏12����)2,  (𝜏13����)2  which are the Laplace 
transform of (𝑢)2, (𝑒12)2,  (𝜏12)2  , (𝜏13)2   respectively with respect to 𝑡1 and are 
defined as 

{(𝑢�)2, (𝑢�)3, (𝜏12����)2} = �{(𝑢)2, (𝑢)3, (𝜏12)2}  𝑒−𝑝𝑡1  𝑑𝑡1

∞

0

 

 
where p is the Laplace transform variable. 
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The resulting boundary value problem is characterised by the following 
relations 

(𝜏12����)2 =
𝑝

�𝑝𝜇 + 1
𝜂�

  
𝜕(𝑢�)2
𝜕𝑦2

(𝜏13����)2 =
𝑝

�𝑝𝜇 + 1
𝜂�

  
𝜕(𝑢�)2
𝜕𝑦3

(−∞ < 𝑦2 < ∞,   𝑦3 ≥ 0)⎭
⎪⎪
⎬

⎪⎪
⎫

                                                                                           (16) 

𝜕
𝜕𝑦2

(𝜏12����)2 +
𝜕
𝜕𝑦3

(𝜏13����)2 = 0                                                                                    (17) 

(𝜏13����)2 = 0 on  𝑦3 = 0 ,   (−∞ < 𝑦2 < ∞,    𝑡 ≥ 0)
(𝜏13����)2 → 0 as  𝑦3 → ∞ ,   (−∞ < 𝑦2 < ∞,    𝑡 ≥ 0)

(𝜏12����)2 → 0  as |𝑦2| → ∞,   for   𝑦3 ≥ 0
�                                               (18) 

 
𝛻2(𝑢�)2 = 0                                                                                                                  (19) 

                                
And  [(𝑢�)2] = 𝑈1���(p)f �𝑦 ′3�  
across 𝐹1 :  𝑦 ′2 = 0, 0 ≤  𝑦 ′3 ≤  D                                                                             (20) 
 
where 𝑈1���(p) is the Laplace transform of 𝑈1(𝑡1) with respect to   𝑡1  so that 

𝑈1���(p) = �𝑈1(𝑡1)  𝑒−𝑝𝑡1  𝑑𝑡1

∞

0

 

To solve this above boundary value problem, a suitably modified form of 
Green's function technique, developed by Maruyama (1966)[2] and Rybicki 
(1971)[3] is used : 

(𝑢�)2(Q) = ∫(𝑢�)2(𝑃){𝐺113(𝑄,𝑃)𝑑𝜉2 − 𝐺112(𝑄, 𝑃)𝑑𝜉3}                                 (21) 
 
where the integration is taken over the fault 𝐹1 and  𝑄(𝑦1 ,𝑦2, 𝑦3) is the field 
point in the half space, not on the fault, and 𝑃(𝜉1, 𝜉2, 𝜉3) is any point on the 
fault 𝐹1   and (𝑢�)2(𝑃) is the discontinuity in (𝑢�)2 across 𝐹1    at the point P while 
𝐺113(𝑄,𝑃) and   𝐺112(𝑄, 𝑃) are two Green's functions are given by : 

𝐺113(𝑄, 𝑃) =
1

2𝜋
�
𝑦3 − 𝜉3
𝐿2

−
𝑦3 + 𝜉3
𝑀2 � 

and                                   

𝐺112(𝑄, 𝑃) =
1

2𝜋
�
𝑦2 − 𝜉2
𝐿2

+
𝑦2 − 𝜉2
𝑀2 � 

where,  
𝐿2 = (𝑦2 − 𝜉2)2 + (𝑦3 − 𝜉3)2,    𝑀2 = (𝑦2 − 𝜉2)2 + (𝑦3 + 𝜉3)2 

Now 𝑃(𝜉1, 𝜉2, 𝜉3) being a point on 𝐹1  ,  0 ≤ 𝜉2 ≤ 𝐷1𝑐𝑜𝑠𝜃1 , 0 ≤ 𝜉3 ≤
𝐷1𝑠𝑖𝑛𝜃1  and 𝜉2 = 𝜉3𝑐𝑜𝑡𝜃1 . We introduce a change of coordinate axes from 
(𝜉1, 𝜉2, 𝜉3) to �𝜉′1, 𝜉′2, 𝜉′3� connected by the relations 

𝜉1 = 𝜉′1 
𝜉2 = 𝜉′2𝑠𝑖𝑛𝜃1 + 𝜉′3𝑐𝑜𝑠𝜃1 

𝜉3 = 𝑑1 − 𝜉′2𝑐𝑜𝑠𝜃1 + 𝜉′3𝑠𝑖𝑛𝜃1 
so that,  𝜉′2 = 0, 0 ≤ 𝜉′3 ≤ 𝐷1  on  𝐹1  . 
Then from (20) using (21) we have 

(𝑢�)2(𝑄)

=
𝑈1���(p)

 2𝜋
� f �𝜉′3� �

𝑦2𝑠𝑖𝑛𝜃1 − (𝑦3 − 𝑑1)𝑐𝑜𝑠𝜃1
𝜉′3

2 − 2𝜉′3{𝑦2𝑐𝑜𝑠𝜃1 + (𝑦3 − 𝑑1)𝑠𝑖𝑛θ1} + 𝑦22 + (𝑦3 − 𝑑1)2

𝐷1

0

 

+
𝑦2𝑠𝑖𝑛𝜃1 + (𝑦3 + 𝑑1)𝑐𝑜𝑠𝜃1

𝜉′3
2 − 2𝜉′3{𝑦2𝑐𝑜𝑠𝜃1 − (𝑦3 + 𝑑1)𝑠𝑖𝑛𝜃1} + 𝑦22 + (𝑦3 + 𝑑1)2

�  𝑑𝜉′3 

or, 

(𝑢�)2(𝑄) =
𝑈1���(p)

 2𝜋
𝜓1(𝑦2 ,𝑦3) 

where,  

𝜓1(𝑦2 ,𝑦3) = � f �𝜉′3� �
𝑦2𝑠𝑖𝑛𝜃1 − (𝑦3 − 𝑑1)𝑐𝑜𝑠𝜃1

𝜉′3
2 − 2𝜉′3{𝑦2𝑐𝑜𝑠𝜃1 + (𝑦3 − 𝑑1)𝑠𝑖𝑛𝜃1} + 𝑦22 + (𝑦3 − 𝑑1)2

𝐷1

0

 

+
𝑦2𝑠𝑖𝑛𝜃1 + (𝑦3 + d1)𝑐𝑜𝑠𝜃1

𝜉′3
2 − 2𝜉′3{𝑦2𝑐𝑜𝑠𝜃1 − (𝑦3 + 𝑑1)𝑠𝑖𝑛𝜃1} + 𝑦22 + (𝑦3 + 𝑑1)2

�  𝑑𝜉′3 

 
 
 
On taking inverse Laplace transform  with respect to  𝑡1  and noting that 
(𝑢)2 = 0  for     𝑡1  ≤ 0 

(𝑢)2 =
𝑈1(𝑡1  )

 2𝜋
𝜓1(𝑦2 ,𝑦3)𝐻(𝑡 − 𝑇1) 

Now from (16), 

(𝜏12����)2 =
𝑝

�𝑝𝜇 + 1
𝜂�

 
𝜕(𝑢�)2
𝜕𝑦2

 

=
𝑝

�𝑝𝜇 + 1
𝜂�

𝑈1(p)
 2𝜋

 𝜓2(𝑦2 , 𝑦3) 

where ,     

𝜓2(𝑦2 ,𝑦3) =
𝜕
𝜕𝑦2

{𝜓1(𝑦2 ,𝑦3)} 

= � f �𝜉′3� �
𝜉′3

2𝑠𝑖𝑛𝜃1 − 2𝜉′3(𝑦3 − 𝑑1) − {𝑦22 − (𝑦3 − 𝑑1)2}𝑠𝑖𝑛𝜃1 + 2𝑦2(𝑦3 − 𝑑1)𝑐𝑜𝑠𝜃1
�𝜉′3

2 − 2𝜉′3{𝑦2𝑐𝑜𝑠𝜃1 + (𝑦3 − 𝑑1)𝑠𝑖𝑛𝜃1} + 𝑦22 + (𝑦3 − 𝑑1)2�
2

𝐷1

0

 

+
𝜉′3

2𝑠𝑖𝑛 + 2𝜉′3(𝑦3 + 𝑑1) − {𝑦22 − (𝑦3 + 𝑑1)2}𝑠𝑖𝑛𝜃1 − 2𝑦2(𝑦3 + 𝑑1)𝑐𝑜𝑠𝜃1
�𝜉′3

2 − 2𝜉′3{𝑦2𝑐𝑜𝑠𝜃1 − (𝑦3 + 𝑑1)𝑠𝑖𝑛𝜃1} + 𝑦22 + (𝑦3 + 𝑑1)2�
2 � 𝑑𝜉′3 

 
 
Now taking inverse Laplace transformation  and noting that 
(𝜏12)2 = 0  for     𝑡1  ≤ 0 

(𝜏12)2 =
𝜇

2𝜋
𝐻(𝑡 − 𝑇1)�𝑈1(𝑡1  ) −

𝜇
𝜂
� 𝑈1(𝜏)𝑒

−𝜇(𝑡−𝑇1−𝜏)
𝜂 𝑑𝜏

𝑡−𝑇1

0

�𝜓2(𝑦2 ,𝑦3) 

(𝜏13)2 =
𝜇

2𝜋
𝐻(𝑡 − 𝑇1)�𝑈1(𝑡1  ) −

𝜇
𝜂
� 𝑈1(𝜏)𝑒

−𝜇(𝑡−𝑇1−𝜏)
𝜂 𝑑𝜏

𝑡−𝑇1

0

�𝜓3(𝑦2 ,𝑦3) 

where,  
𝜓3(𝑦2, 𝑦3)

= −� f �𝜉′3� �
𝜉′3

2𝑐𝑜𝑠𝜃1 − 2𝜉′3𝑦2 + {𝑦22 − (𝑦3 − 𝑑1)2}𝑐𝑜𝑠𝜃1 + 2𝑦2(𝑦3 − 𝑑1)𝑠𝑖𝑛𝜃1
�𝜉′3

2 − 2𝜉′3{𝑦2𝑐𝑜𝑠𝜃1 + (𝑦3 − 𝑑1)𝑠𝑖𝑛𝜃1} + 𝑦22 + (𝑦3 − 𝑑1)2�
2

𝐷1

0

 

−
𝜉′3

2𝑐𝑜𝑠𝜃1 − 2𝜉′3𝑦2 + {𝑦22 − (𝑦3 + 𝑑1)2}c𝑜𝑠𝜃1 − 2𝑦2(𝑦3 + 𝑑1)𝑠𝑖𝑛𝜃1
�𝜉′3

2 − 2𝜉′3{𝑦2𝑐𝑜𝑠𝜃1 − (𝑦3 + 𝑑1)𝑠𝑖𝑛𝜃1} + 𝑦22 + (𝑦3 + 𝑑1)2�
2 � 𝑑𝜉′3 

 

We  assuming   𝑈1(𝑡1  ) = v1t1 
 

(𝑢)2 = 𝐻(𝑡 − 𝑇1)
v1t1
 2𝜋

𝜓1(𝑦2, 𝑦3) 
 

(𝑒12)2 = 𝐻(𝑡 − 𝑇1)
v1t1
 2𝜋

𝜓2(𝑦2 ,𝑦3) 
 

(𝜏12)2 = 𝐻(𝑡 − 𝑇1)
v1𝜂
2𝜋

�1 − 𝑒
−𝜇(𝑡−𝑇1)

𝜂 �𝜓2(𝑦2, 𝑦3) 

(𝜏13)2 = H(𝑡 − 𝑇1)
v1𝜂
2𝜋

�1 − 𝑒
−𝜇(𝑡−𝑇1)

𝜂 �𝜓3(𝑦2, 𝑦3) 

�𝜏1′2′�2 = 𝐻(𝑡 − 𝑇1)
v1𝜂
2𝜋

�1 − 𝑒
−𝜇(𝑡−𝑇1)

𝜂 � (𝜓2 𝑠𝑖𝑛𝜃1 − 𝜓3  c𝑜𝑠𝜃1) 

�𝜏1′′2′′�2 = 𝐻(𝑡 − 𝑇1)
v1𝜂
2𝜋

�1 − 𝑒
−𝜇(𝑡−𝑇1)

𝜂 � (𝜓2 𝑠𝑖𝑛𝜃2 − 𝜓3 c𝑜𝑠𝜃2) 

 
 
5. SOLUTION FOR THE DISPLACEMENT, STRAIN AND STRESSES 
AFTER THE COMMENCEMENT OF THE FAULT CREEP ACROSS 𝑭𝟐   
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When the accumulated stress near 𝐹2   exceeds the threshold value (𝜏𝑐)2  a 
creeping movement with a velocity v2   cm/year across 𝐹2   starts. Providing in a 
similar way the final solutiopn after 𝑡 > 𝑇2 is given by 
 
𝑢 = (𝑢)0 + 𝑦2𝜏∞(0) �𝑘𝑡

𝜇
+ 𝑡

𝜂
+ 𝑘𝑡2

2𝜂
� + 𝐻(𝑡 − 𝑇1) v1t1

 2𝜋
𝜓1(𝑦2, 𝑦3)

+𝐻(𝑡 − 𝑇2) v2t2
 2𝜋

𝜙1(𝑦2, 𝑦3)

𝑒12 = (𝑒12)0  + 𝜏∞(0) �𝑘𝑡
𝜇

+ 𝑡
𝜂

+ 𝑘𝑡2

2𝜂
� + 𝐻(𝑡 − 𝑇1) v1t1

 2𝜋
𝜓2(𝑦2 ,𝑦3)

+𝐻(𝑡 − 𝑇2) v2t2
 2𝜋

𝜙2(𝑦2 ,𝑦3)

𝜏12 = (𝜏12)0𝑒
−𝜇𝑡𝜂 + 𝜏∞(0) �1 + 𝑘𝑡 − 𝑒−

𝜇𝑡
𝜂 �

+𝐻(𝑡 − 𝑇1) v1𝜂
2𝜋
�1 − 𝑒

−𝜇(𝑡−𝑇1)
𝜂 � 𝜓2(𝑦2 ,𝑦3)

+𝐻(𝑡 − 𝑇2) v2𝜂
2𝜋
�1 − 𝑒

−𝜇(𝑡−𝑇2)
𝜂 �𝜙2(𝑦2 ,𝑦3)

𝜏13 = (𝜏13)0𝑒
−𝜇𝑡𝜂 + H(𝑡 − 𝑇1) v1𝜂

2𝜋
�1 − 𝑒

−𝜇(𝑡−𝑇1)
𝜂 � 𝜓3(𝑦2 ,𝑦3)

+H(𝑡 − 𝑇2) v2𝜂
2𝜋
�1 − 𝑒

−𝜇(𝑡−𝑇2)
𝜂 �𝜙3(𝑦2 ,𝑦3)

𝜏1′2′ =  �𝜏1′2′�0𝑒
−𝜇𝑡𝜂 + 𝜏∞(0) �1 + 𝑘𝑡 − 𝑒−

𝜇𝑡
𝜂 � 𝑠𝑖𝑛𝜃1

+𝐻(𝑡 − 𝑇1) v1𝜂
2𝜋
�1 − 𝑒

−𝜇(𝑡−𝑇1)
𝜂 � (𝜓2 𝑠𝑖𝑛𝜃1 − 𝜓3  c𝑜𝑠𝜃1)

+𝐻(𝑡 − 𝑇2) v2𝜂
2𝜋
�1 − 𝑒

−𝜇(𝑡−𝑇2)
𝜂 � (𝜙2  𝑠𝑖𝑛𝜃1 − 𝜙3 c𝑜𝑠𝜃1)

𝜏1′′2′′ =  �𝜏1′′2′′�0𝑒
−𝜇𝑡𝜂 + 𝜏∞(0) �1 + 𝑘𝑡 − 𝑒−

𝜇𝑡
𝜂 � 𝑠𝑖𝑛𝜃2

+𝐻(𝑡 − 𝑇1) v1𝜂
2𝜋
�1 − 𝑒

−𝜇(𝑡−𝑇1)
𝜂 � (𝜓2  𝑠𝑖𝑛𝜃2 − 𝜓3  c𝑜𝑠𝜃2)

+𝐻(𝑡 − 𝑇2) v2𝜂
2𝜋
�1 − 𝑒

−𝜇(𝑡−𝑇2)
𝜂 � (𝜙3 𝑠𝑖𝑛𝜃2 − 𝜙3 c𝑜𝑠𝜃2) ⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

                    (22) 

where,  

𝜙1(𝑦2, 𝑦3) = � 𝑓2�𝜂′3�

𝐷2

0

 

�
(𝑦2 − 𝐷)𝑠𝑖𝑛𝜃2 − (𝑦3 − 𝑑2)𝑐𝑜𝑠𝜃2

𝜂′3
2 − 2𝜂′3{(𝑦2 − 𝐷)𝑐𝑜𝑠𝜃2 + (𝑦3 − 𝑑2)𝑠𝑖𝑛𝜃2} + (𝑦2 − 𝐷)2 + (𝑦3 − 𝑑2)2

 

+
(𝑦2 − 𝐷)𝑠𝑖𝑛𝜃2 + (𝑦3 − 𝑑2)𝑐𝑜𝑠𝜃2

𝜂′3
2 − 2𝜂′3{(𝑦2 − 𝐷)𝑐𝑜𝑠𝜃2 − (𝑦3 − 𝑑2)𝑠𝑖𝑛𝜃2} + (𝑦2 − 𝐷)2 + (𝑦3 − 𝑑2)2

�  𝑑𝜂′3 

 
 

𝜙2(𝑦2, 𝑦3)

= � 𝑓2�𝜂′3�

⎣
⎢
⎢
⎢
⎡ 𝜂′3

2𝑠𝑖𝑛𝜃2 − 2𝜂′3(𝑦3 − 𝑑2) −
{(𝑦2 − 𝐷)2 − (𝑦3 − 𝑑2)2}𝑠𝑖𝑛𝜃2 + 2(𝑦2 − 𝐷)(𝑦3 − 𝑑2)𝑐𝑜𝑠𝜃2

�𝜂
′
3
2 − 2𝜂′3{(𝑦2 − 𝐷)𝑐𝑜𝑠𝜃2 + (𝑦3 − 𝑑2)𝑠𝑖𝑛𝜃2}

+(𝑦2 − 𝐷)2 + (𝑦3 − 𝑑2)2
�
2

𝐷2

0

 

                                           

+

𝜂′3
2𝑠𝑖𝑛𝜃2 + 2𝜂′3(𝑦3 + 𝑑2) − {(𝑦2 − 𝐷)2 − (𝑦3 + 𝑑2)2}𝑠𝑖n𝜃2

−2(𝑦2 − 𝐷)(𝑦3 + 𝑑2)𝑐𝑜𝑠𝜃2

�𝜂
′
3
2 − 2𝜂′3{(𝑦2 − 𝐷)𝑐𝑜𝑠𝜃2 + (𝑦3 + 𝑑2)𝑠𝑖𝑛𝜃2}

+(𝑦2 − 𝐷)2 + (𝑦3 + 𝑑2)2
�
2

⎦
⎥
⎥
⎥
⎤

𝑑𝜂′3 

𝜙3(𝑦2 ,𝑦3) =

= −� 𝑓2�𝜂′3�

⎣
⎢
⎢
⎢
⎡ 𝜂′3

2𝑐𝑜𝑠𝜃2 − 2𝜂′3(𝑦2 − 𝐷) +
{(𝑦2 − 𝐷)2 − (𝑦3 − 𝑑2)2}𝑐𝑜𝑠𝜃2 + 2(𝑦2 − 𝐷)(𝑦3 − 𝑑2)𝑠𝑖𝑛𝜃2

�𝜂
′
3
2 − 2𝜂′3{(𝑦2 − 𝐷)𝑐𝑜𝑠𝜃2 + (𝑦3 − 𝑑2)𝑠𝑖𝑛𝜃2} +

(𝑦2 − 𝐷)2 + (𝑦3 − 𝑑2)2
�
2

𝐷2

0

 

 

−

𝜂′3
2𝑐𝑜𝑠𝜃2 − 2𝜂′3(𝑦2 − 𝐷) + {(𝑦2 − 𝐷)2 − (𝑦3 + 𝑑2)2}𝑐𝑜𝑠𝜃2

−2(𝑦2 − 𝐷)(𝑦3 + 𝑑2)𝑠𝑖𝑛𝜃2

�𝜂
′
3
2 − 2𝜂′3{(𝑦2 − 𝐷)𝑐𝑜𝑠𝜃2 + (𝑦3 + 𝑑2)𝑠𝑖𝑛𝜃2}

+(𝑦2 − 𝐷)2 + (𝑦3 + 𝑑2)2
�
2

⎦
⎥
⎥
⎥
⎤

𝑑𝜂′3 

 

It has been observed, as in [4] that the strains and the stresses will 
remain bounded everywhere in the model, including the upper and lower 
edges of the faults, the functions f1 and f2 should satisfy the following sufficient 
conditions: 
 (I)  𝑓(𝑦3),  𝑓 ′(𝑦3)  are continuous in 0≤ 𝑦3 ≤ 𝐷1 , 
II) Either (a) 𝑓 ′′(𝑦3)   is continuous in 0≤ 𝑦3 ≤ 𝐷1, 
or (b) 𝑓 ′′(𝑦3) is continuous in 0≤ 𝑦3 ≤ 𝐷1, except for a finite number of points of 
finite discontinuity in 0≤ 𝑦3 ≤ 𝐷1, 
or (c) 𝑓 ′′(𝑦3) is continuous in 0≤ 𝑦3 ≤ 𝐷1,except possibly for a finite number of 
points of finite discontinuity and for the ends points of (0, 𝐷1), there exist real 
constants m<1 and n<1 such that 𝑦3𝑚𝑓 ′′(𝑦3) → 0 or to a finite limit as 𝑦3 → 0 +
0 and (𝐷1 − 𝑦3)𝑛𝑓 ′′(𝑦3) → 0  or to a finite limit as 𝑦3 → 𝐷1 − 0  and 
(III) 𝑓(𝐷1) = 0 = 𝑓 ′(𝐷1)  ,     𝑓 ′(0) = 0, 
These are sufficient conditions which ensure finite displacements, stresses 
and strains for all finite (𝑦2 ,𝑦3 , 𝑡) .  
We can evaluate the integrals if 𝑓(𝑦3)  is any polynomial satisfying (I),(II) and 
(III). One such function is 

f�𝑦 ′3� =
𝑦 ′3

2�𝑦 ′3 − 𝐷1�
2

�𝐷12 �
4  

 
Similar conditions for the fault  𝐹2. 
 

6. NUMERICAL COMPUTATIONS 
 
We consider 𝑓1�𝜉′3� to be 

𝑓1�𝜉′3� =
𝜉′3

2�𝜉′3 − 𝐷1�
2

�𝐷12 �
4  

(and a similar function for 𝑓2�𝜂′3� ) which satisfies all the conditions for 
bounded strain and stresses stated above.  

Following [5], [6] and the recent studies on rheological behaviour of crust and 
upper mantle by [7], [8] the values to the model parameters are taken as: 
𝜇 =  3.5 x 1011dyne/sq.cm. 
𝜂 = 5x1020 poise 
𝑑1 𝑎𝑛𝑑  𝑑2 =Depth of the fault =  5  km. and 10 km. ( noting that the depth of 
the major earthquake faults are in between 10-30 km. ) 
𝑡1 = 𝑡 − 𝑇1 
𝑡2 = 𝑡 − 𝑇2 
𝜏∞(𝑡) = 𝜏∞(0)(1 + 𝑘𝑡), 𝑘 = 10−9 
𝜏∞(0) = 50 bar 
(𝜏12)0 = 50 bar 
(𝜏13)0 = 50 bar 
(𝜏𝑐)1 = 200  bar 
(𝜏𝑐)2 =  250 bar 
D = 10 km. =  Distance measure along the horizontal axes between the upper 
edges of the fault. 
𝐷1= 8 km. 
𝐷2= 10 km. 
 
 
We compute the following quantities: 
1.Surface share strain  𝑒12 due to the tectonic forces against time given by 

𝐸12 = 𝑒12 − (𝑒12)0 = 𝜏∞(0) �
𝑘𝑡
𝜇

+
𝑡
𝜂

+
𝑘𝑡2

2𝜂
� + 𝐻(𝑡 − 𝑇1)

v1t1
 2𝜋

𝜓2(𝑦2 ,𝑦3) 

                                   +𝐻(𝑡 − 𝑇2) v2t2
 2𝜋

𝜙2(𝑦2 ,𝑦3) 
 
 
2. Share stress across the fault against depth along a line L: 
𝑦2 = 5 km for different inclination of the fault 

i) 𝜃1 = 𝜃2 = 600 
ii) 𝜃1 = 𝜃2 = 900 
  

3. i) Shear stress induced by the creeping movement across 𝐹1 at different 
points near the fault 𝐹2 
ii) Shear stress induced by the creeping movement across 𝐹2 at different 
points near the fault 𝐹1 
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4. Total stress at a point y2=15 km, y3=15 km against time for different 
creeping velocities 𝑣1and 𝑣2. 
 
5. Region of stress accumulation and release due to the fault movement 
i) across 𝐹1 only 
ii) across 𝐹2 only   
iii) across 𝐹1   and   𝐹2 
and their contour representation. 
 
 
7.  DISCUSSION OF THE RESULTS 
 
1. Fig. (3) shows the surface share strain increases with time at increasingly 
higher rate. The magnitude is of the order of  10−3. This because of the fact 
that the stress generated due to the tectonic forces is increasing with time. 
This has been found to be quite reasonable in view of the observational 
results. 
 
2. Fig. (4) shows the variation of 𝜏1′2′ against depth along a line L for which y2= 
5 km. It is found that there is a region of stress accumulation followed by a 
region of stress release and accumulation successively. At a depth of about 
20 km the magnitude of the stresses becomes negligibly small. The nature of 
the dependence of the stress with depth depend upon the inclination of the 
fault quantitively but they have similar quantitive characters. 
 
3. i) Fig. (5a) shows the shear stress generated due to the creeping 
movement across 𝐹1     in the vicinity of the fault 𝐹2  .  It is found that the 
magnitude of the stress near 𝐹2   increases gradually as we move along 𝐹2    
from its upper edge and attains a maximum just below its middle point. There 
after the stress remaining almost the same with a decreasing trends. For a 
first few kilometres from the upper edge there is a region of stress release 
followed by a region of stress accumulation. 
 
ii) However the scenario near the fault 𝐹1    (Fig. 5b) due to the creeping 
movement across 𝐹2   is totaly different. The entire region falls under the region 
of stress release. The magnitude of the stress release is found to increase as 
we move downward along the fault 𝐹1    reaching a point of maximum release 
near the middle of the fault. 
 
4. Fig. (6) shows the stress τ1′′2′′ against time at a point y2=15 km, y3=15 km for 
different creep velocities given by 𝑣1 = 𝑣2 = 0  cm/year, 10 cm/year, 15 
cm/year and 20 cm/year. The stress is found to be gradually increasing up to 
a time T1 = 117  year just prior to the first fault movement. There after the rate 
of accumulation of stress is found to increase with increasing velocities of 
creep. This continues up to  t = T2 = 152  years (prior the second fault 
movement). Due to the creeping movement across 𝐹2    the magnitude of the 
stress falls down, heigher the creep velocity across 𝐹2   more the stress drop. 
However, due the increasing τ∞(t) the reduced stresses starts increasing once 
again make up the stress drop a few decades. It may be noted that due to the 
movement across 𝐹1    , the stress at the selected point increases,while for 
movement across 𝐹2   , the said stress decreases at that point. This can be 
verified from Fig. 5(a) and 5(b). 
 
5.i) Fig. (7a) shows the region of stress accumulation/release due to the fault 
movement across 𝐹1    only at t = T1 + 1  year. 
 
ii) Fig. (7b) shows the region of stress accumulation/release due to the fault 
movement across 𝐹2   only at t = T2 + 1  year. 
 
iii) Fig.  (7c) shows the region of stress accumulation/release due to the fault 
movement across both 𝐹1    and 𝐹2   one year after T2 . 
 
6. The region of stress accumulation/release depicted in the above figure has 
been shown by using stress contour map in Fig. (8a), (8b) and (8c). 
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Figure. 1. The section of the fault system by the plane 𝑦1 = 0  and relevant 
coordinate axes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Stress 𝜏1′2′ (before fault movement) against time for different values 
of k 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Surface share strain before the fault movement 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Stress against depth 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5a. Shear stress induced by the creeping movement across 𝐹1 at 
different points near the fault 𝐹2   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5b. Shear stress induced by the creeping movement across 𝐹2 at 
different points near the fault 𝐹1   
 
                                                                                                             
    
 
 
 
                                                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Stress near the mid point on the fault (y2  =15 km. and (y3 =15 km.) 
against time for different creep velocities  
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Figure 7a. Region of stress accumulation/reduction due to the creeping 
movement across 𝐹1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7b. Region of stress accumulation/reduction due to the creeping 
movement across 𝐹2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7c. Region of stress accumulation/reduction 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8a. Contour plot of shear stress due to the creeping movement across 
𝐹1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8b. Contour plot of shear stress due to the creeping movement across 
𝐹2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8c. Contour plot of shear stress  
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